Sejarah Komputasi Modern, Klasifikasi Komputasi Modern, Persoalan Akurasi dalam Komputasi Modern, Tujuan dan Hambatan Komputasi Paralel, Arsitektur Memori pada Komputer Paralel, Realisasi dan Dampak Komputasi Modern

 

             Pengertian Komputasi Parallel

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuangan, bioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak. Kasus kedua umum ditemui di kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dll.

parallelproblem.gif

Pemrograman Parallel

Di dalam komputasi parallel ada yang dinamakan dengan pemrograman parallel. Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan (komputasi paralel), baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel) CPU. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam suatu jaringan komputer lebih sering istilah yang digunakan adalah sistem terdistribusi (distributed computing).

Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan. Analogi yang paling gampang adalah, bila anda dapat merebus air sambil memotong-motong bawang saat anda akan memasak, waktu yang anda butuhkan akan lebih sedikit dibandingkan bila anda mengerjakan hal tersebut secara berurutan (serial). Atau waktu yg anda butuhkan memotong bawang akan lebih sedikit jika anda kerjakan berdua.

Performa dalam pemrograman paralel diukur dari berapa banyak peningkatan kecepatan (speed up) yang diperoleh dalam menggunakan tehnik paralel. Secara informal, bila anda memotong bawang sendirian membutuhkan waktu 1 jam dan dengan bantuan teman, berdua anda bisa melakukannya dalam 1/2 jam maka anda memperoleh peningkatan kecepatan sebanyak 2 kali.

Parallel processing berbeda dengan multitasking, yaitu satu CPU mengeksekusi beberapa program sekaligus. Parallel processing disebut juga parallel computing. Pada system komputasi parallel terdiri dari beberapa unit prosesor dan beberapa unit memori. Ada dua teknik yang berbeda untuk mengakses data di unit memori, yaitu shared memory address dan message passing. Berdasarkan cara mengorganisasikan memori ini computer parallel dibedakan menjadi shared memory parallel machine dan distributed memory parallel machine.

Hukum yang Berlaku dalam Parallel Processing

  1. Hukum Amdahl (InggrisAmdahl’s law) adalah prinsip dasar dalam peningkatan kecepatan proses suatu komputer jika hanya sebagian dari peralatan perangkat keras ataupun perangkat lunak-nya yang diperbaharui/ditingkatkan kinerjanya. Nama Amdahl diambil dari nama seorang arsitektur komputer terkenal di perusahaan IBMGene Amdahl yang pertama kali mencetuskan bentuk formulasi ini.

Formulasi atau hukum ini banyak dipakai dalam bidang komputasi paralel untuk meramalkan peningkatan kecepatan maksimum pemrosesan data (secara teoretis) jika jumlah prosesor di dalam komputer paralel tersebut ditambah.

Hukum Amdahl ini dinyatakan dalam bentuk:

amdahl

dengan:

  • {\displaystyle P_{k}\ } adalah prosentase jumlah instruksi yang
  • {\displaystyle S_{k}\ } adalah faktor percepatannya (1 menyatakan tanpa percepatan),
  • {\displaystyle k\ } menyatakan tiap bagian yang dipercepat/diperlambat, dan
  • {\displaystyle n\ } adalah jumlah bagian atau prosesor keseluruhan dalam proses percepatan ini.

2. Hukum Gustafson

Pendapat yang dikemukakan Gustafson hampir sama dengan Amdahl, tetapi dalam pemikiran Gustafson, sebuah komputasi paralel berjalan dengan menggunakan dua atau lebih mesin untuk mempercepat penyelesaian masalah dengan memperhatikan faktor eksternal, seperti kemampuan mesin dan kecepatan proses tiap-tiap mesin yang digunakan.

Model Komputasi Paralel

  1. Embarasingly Parallel adalah pemrograman paralel yang digunakan pada masalah-masalah yang bisa diparalelkan tanpa membutuhkan komunikasi satu sama lain. Sebenarnya pemrograman ini bisa dibilang sebagai pemrograman paralel yang ideal, karena tanpa biaya komunikasi, lebih banyak peningkatan kecepatan yang bisa dicapai.
  2. Taksonomi dari model pemrosesan paralel dibuat berdasarkan alur instruksi dan alur data yang digunakan. Taksonomi Flynn membagi arsitektur komputer paralel dengan menggunakan sudut pandang instruksi dan data, sehingga terdapat empat jenis arsitektur komputer paralel :

1. SISD (Single Instruction, Single Data) : arsitektur ini adalah arsitektur yang mewakili komputer serial, di mana hanya ada satu prosesor dan satu aliran masukan data (memori) sehingga hanya ada satu task yang dapat dieksekusi pada suatu waktu. Arsitektur von Neumann termasuk dalam jenis ini

2. SIMD (Single Instruction, Multiple Data) : pada arsitektur ini, eksekusi sebuah instruksi akan dilakukan secara bersamaan oleh beberapa prosesor, di mana suatu prosesor dapat menggunakan data yang berbeda dengan prosesor lain. Karakteristik lain dari arsitektur ini adalah alur eksekusi instruksi yang deterministik (state dari instruksi dan data pada suatu waktu dapat dengan mudah diketahui). Arsitektur ini cocok untuk program yang dapat dibagi menjadi task-task yang mempunyai derajat keteraturan yang tinggi, misalnya sistem pengolah grafik

3. MISD (Multiple Instruction, Single Data) : pada arsitektur ini, berbagai instruksi akan dieksekusi secara bersamaan oleh beberapa prosesor dengan menggunakan data yang sama. Arsitektur ini kurang populer karena hanya sedikit permasalahan yang membutuhkan solusi dengan menggunakan karakteristik arsitektur ini. Contoh permasalahan yang mungkin membutuhkan arsitektur ini antara lain adalah multiple frequency filter dan program pemecah sandi yang menggunakan beberapa algoritma kriptografi sekaligus

4. MIMD (Multiple Instruction, Multiple Data) : pada arsitektur ini, berbagai instruksi dapat dieksekusi oleh beberapa prosesor di mana masing-masing prosesor dapat menggunakan data yang berbeda. Eksekusi instruksi pada arsitektur ini dapat dilakukan secara sinkron (pada suatu rentang waktu, jumlah instruksi yang dieksekusi oleh semua prosesor adalah sama) maupun asinkron, deterministik maupun non-deterministik. Selain itu, arsitektur ini dapat melakukan pekerjaan sesuai dengan karakteristik dari ketiga asitektur sebelumnya.

Tujuan Komputasi Paralel

Tujuan dari komputasi paralel adalah meningkatkan kinerja komputer dalam menyelesaikan berbagai masalah. Dengan membagi sebuah masalah besar ke dalam beberapa masalah kecil, membuat kinerja menjadi cepat.

Formula komputasi paralel yang diajukan pada hukum Amdahl

parallel komputasi

Dimana a adalah banyaknya paralel yang terjadi. Secara teori, artinya proses penyelesaian masalah menjadi lebih cepat dengan menggunakan komputasi paralel.

Hubungan Komputasi Modern dengan Komputasi Parallel:

Tujuan dari komputasi paralel adalah meningkatkan kinerja komputer dalam menyelesaikan berbagai masalah. Dengan membagi sebuah masalah besar ke dalam beberapa masalah kecil, membuat kinerja menjadi cepat.

Formula komputasi paralel yang diajukan pada hukum Amdahl. Dimana a adalah banyaknya paralel yang terjadi. Secara teori, artinya proses penyelesaian masalah menjadi lebih cepat dengan menggunakan komputasi paralel.

Jadi, sudah jelas tertera bahwa hubungan dari Komputasi Modern dan Pemrosesan Parallel adalah penggunaan komputer dengan pemrosesan paralel sangat mempercepat kinerja dibandingkan dengan penyelesaian masalah dengan satu CPU. Oleh sebab itu, peningkatan kinerja atau proses komputasi semakin diterapkan, salah satunya adalah dengan cara meningkatkan kecepatan perangkat keras. Dimana komponen utama dalam perangkat keras komputer adalah processor. Sedangkan parallel processing adalah penggunaan beberapa processor (multiprocessor atau arsitektur komputer dengan banyak processor) agar kinerja computer semakin cepat.

Kinerja komputasi dengan menggunakan paralel processing itu menggunakan dan memanfaatkan beberapa komputer atau CPU untuk menemukan suatu pemecahan masalah dari masalah yang ada. Komputasi dengan paralel processing akan menggabungkan beberapa CPU, dan membagi-bagi tugas untuk masing-masing CPU tersebut. Jadi, satu masalah terbagi-bagi penyelesaiannya.

Komentar

Postingan populer dari blog ini

Tugas Informatika Lanjutan : Praktik Lintas Bidang (Tematis). Komputasi dan Ruang Lingkupnya

Portofolio DDG